
Towards Algorithmic Typing for DOT (Short Paper)
Abel Nieto

University of Waterloo

Waterloo, ON, Canada

anietoro@uwaterloo.ca

Abstract
The Dependent Object Types (DOT) calculus formalizes key

features of Scala. The D<: calculus is the core of DOT. To

date, presentations of D<: have used declarative, as opposed

to algorithmic, typing and subtyping rules. Unfortunately,

algorithmic typing for full D<: is known to be an undecidable

problem.

We explore the design space for a restricted version of D<:

that has decidable typechecking. Even in this simplified D<:,

algorithmic typing and subtyping are tricky, due to the “bad

bounds” problem. The Scala compiler bypasses bad bounds at

the cost of a loss in expressiveness in its type system. Based

on the approach taken in the Scala compiler, we present

the Step Typing and Step Subtyping relations for D<:. These

relations are sound and decidable. They are not complete

with respect to the original D<: typing rules.

CCS Concepts • Software and its engineering→ Gen-
eral programming languages;

Keywords Scala, dependent object types, DOT calculus,

algorithmic typing

ACM Reference Format:
Abel Nieto. 2017. Towards Algorithmic Typing for DOT (Short

Paper). In Proceedings of 8th ACM SIGPLAN International Scala
Symposium (SCALA’17). ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3136000.3136003

1 Introduction
Would you rather have a typechecker that is run by the

computer but is sometimes wrong, or one that is always

right but needs to be run by hand?

“I want to have my cake and eat it too”, you say. That is

going to be difficult. On the one hand, the Scala compiler

implements a typechecking algorithm that accepts or rejects

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SCALA’17, October 22–23, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed

to Association for Computing Machinery.

ACM ISBN 978-1-4503-5529-2/17/10. . . $15.00

https://doi.org/10.1145/3136000.3136003

Scala programs, but is occasionally wrong due to bugs. On

the other hand, the DOT calculus is type-safe [Amin et al.

2016], but its typing rules can only be run manually via a

proof assistant.

Why manually? The problem is that the typing rules are

not syntax-directed, so an algorithm cannot be easily de-

rived from them. For example, take the transitivity rule for

subtyping, present in many calculi (DOT included):

Γ ⊢ S <: T Γ ⊢ T <: U

Γ ⊢ S <: U
(Trans)

For a theorem prover this rule is no problem: get the hu-

man to provide a T for which the premises are satisfied, and

then we can conclude Γ ⊢ S <: U . For an algorithm, it is

harder: how should it guess the right T ? Iterating over the
infinitely many possibilities is not an option.

The standard solution is to tweak the inference rules in

such a way that the problematic rule is merged with others,

becoming less general but more tractable. Here is how Ker-

nel F<: [Cardelli et al. 1994] merges transitivity with type

variable lookup:

X <: U ∈ Γ Γ ⊢ U <: T

Γ ⊢ X <: T
(Trans-TVar)

This is better: to determine whether X is a subtype of T ,
the typechecker can look up X in Γ, obtain the upper bound

U , and recursively check whether Γ ⊢ U <: T .
In this paper, we describe our work in progress towards

algorithmic typing for D<: [Amin et al. 2016], a simple cal-

culus that is the core of DOT. Our quest gets off to a bad

start: D<: is a generalization of F<:, the polymorphic lambda

calculus with subtyping. Typing F<: is undecidable [Pierce

1994], which makes typing D<: also undecidable [Rompf and

Amin 2015].

There is still hope, though. There are simpler versions of

F<: with decidable typechecking. Could they be used as the

basis for a simpler D<: with algorithmic typing rules?

This paper makes three contributions. First, we describe

how even when the original source of undecidability is elim-

inated, the problem of bad bounds complicates algorithmic

typing and subtyping of D<: (Section 2).

If bad bounds are so hard to deal with, how does the Scala

compiler handle them? In fact, it does not. In Section 3, we

show how the Scala compiler sidesteps the bad bounds prob-

lem by using a subtyping relation that is not transitive.

2

https://doi.org/10.1145/3136000.3136003
https://doi.org/10.1145/3136000.3136003
https://doi.org/10.1145/3136000.3136003

SCALA’17, October 22–23, 2017, Vancouver, Canada Abel Nieto

x ,y, z Variable S,T ,U ::= Type
v ::= Value ⊤ top type

{A = T } type tag ⊥ bottom type

λ(x : T)t lambda {A : S ..T } type declaration

s, t ,u ::= Term x .A path-dependent type

x variable ∀(x : S)T dependent function

v value

x y application

let x = t in u let

Figure 1. Abstract syntax of D<: [Amin et al. 2016]

Finally, in Section 4 we introduce the Step Typing and Sub-

typing relations. Step Typing and Subtyping are sound and

decidable, but not complete, with respect to D<:’s standard

relations.

2 Bad Bounds
Pierce [2002] presents a design recipe for coming up with

algorithmic typing rules for a calculus. We start with a set

of declarative typing rules. We then modify the rules so that

they are all syntax-directed, and prove them sound with re-

spect to the declarative rules. Finally, we prove a minimality
result: if a term can be typed, the algorithmic rules will type

it with the most precise type. Γ ⊢ t : U =⇒ Γ ⊢A t : T ∧ Γ ⊢
T <: U , where ⊢A is the algorithmic typing relation.

Below, we conjecture that there does not exist an algo-

rithmic typing relation for D<: that satisfies the minimality

condition.

D<: has a restricted form of types as values (Figure 1). A

type tag {A = T } defines A as an alias for T , and its type is

the type declaration {A : T ..T }. A type declaration {A : S ..T }
can also have different lower and upper bounds, indicating

thatA is any type between S andT . If a variable x is mapped

to a type declaration {A : S ..T } in the current type environ-

ment, then we can refer to the path-dependent type x .A:
λ(x : {A : S ..T }) . . . x .A . . .

A path-dependent type is related to the lower and upper

bounds in its type declaration via subtyping:

Γ ⊢ x : {A : S ..T }

Γ ⊢ S <: x .A
(<:-Sel)

Γ ⊢ x : {A : S ..T }

Γ ⊢ x .A <: T
(Sel-<:)

Now notice what happens when <:-Sel and Sel-<: are

combined with Trans, in a well-typed term λ(e : {E : ⊤..⊥})

λ(f : ⊤) λ(x : ⊤) f x

How can f x bewell-typed, when f has type⊤? The reason
is that the application is typed in an environment where

⊤ <: e .E and e .E <: ⊥, which means that ⊤ <: ⊥, because
of transitivity. The entire type lattice collapses, so f can also

be assigned type e.g. ⊤ → ⊤, making f x type-correct.

In effect, a type declaration introduces not only a subtyp-

ing relation between a path-dependent type and its bounds,

but also a subtyping relation between the bounds themselves.

Amin et al. [2016] refers to these “strange” type declarations

as having “bad bounds”. Bad bounds affect minimality be-

cause a term can now be typed with two different types,

neither of which is a subtype of the other. This leads us to

the conjecture below.

Conjecture 2.1 (Impossibility of minimal typing). Let Γ ⊢
t : T and Γ ⊢ T <: U be the typing and subtyping relations
for D<:. There does not exist a function Γ ⊢A t : T 1 such that
(Γ ⊢A t : T =⇒ Γ ⊢ t : T) ∧ (Γ ⊢ t : U =⇒ Γ ⊢A t : T ∧ Γ ⊢
T <: U).

To see why the conjecture should be true, suppose such a

function ⊢A exists. Now consider the term

A ≡ λ(e : {E : ∀(b : B)B..∀(b : B)C})

let f = λ(b : B)b in
let b = {V = ⊤} in f b.

where B and C are syntactic abbreviations for types: B ≡

{V : ⊤..⊤}, C ≡ {Z : ⊤..⊤}.

Term A is a lambda abstraction. The argument e to the

lambda is annotatedwith type {E : ∀(b : B)B..∀(b : B)C}. This
means that in the body of A we have ∀(b : B)B <: ∀(b : B)C .
Since functions are covariant in their return type, we would

usually need B <: C , but in this case B andC are type declara-

tions with different labels (V and Z , respectively), so neither

should be a subtype of the other. This means that e has bad
bounds.

Within the body of A, f can be typed as ∀(b : B)B, but,
because of the bad bounds (and subsumption), also as ∀(b :

B)C . In turn, b has type {V : ⊤..⊤} = B. In the application f b,
we can give f the type ∀(b : B)B, in which case the type of

the entire application will be B, or f can have type ∀(b : B)C ,
giving the application type C . The problem is that neither B
nor C is a subtype of the other, making it unlikely that there

is a minimal type.

More formally, while typechecking A, we will eventually
descend into the environment

Γ⋆ = e : {E : ∀(b : B)B..∀(b : B)C}

The introduced bad bounds ensure Γ⋆ ⊢ ∀(b : B)B <: ∀(b :

B)C . If w denotes the body of the lambda, Γ⋆ ⊢ w : B and

Γ⋆ ⊢ w : C .
Minimality implies Γ⋆ ⊢A w : T , with Γ⋆ ⊢ T <: B. By

Lemma 2.1,T = ⊥ orT = {V : V1..V2}. Similarly, Γ⋆ ⊢ T <: C ,
which means T = ⊥ or T = {Z : Z1..Z2}. This means T = ⊥.
Because ⊢A is sound, we must have Γ⋆ ⊢ w : ⊥, which does

not seem like an obtainable judgment.

Lemma 2.1. Γ⋆ ⊢ T <: {X : X1..X2} =⇒ T = ⊥ ∨ T ={
X : X ′

1
..X ′

2

}
.

It is not clear that the impossibility result, if true, carries

over to DOT, because DOT has intersection types. A typing

1
Notice Γ ⊢A t : T is a function, and not simply a relation. Therefore, the

(Γ, t) pair is mapped to at most one type.

3

Towards Algorithmic Typing for DOT (Short Paper) SCALA’17, October 22–23, 2017, Vancouver, Canada

function for DOT might be able to produce the judgment

Γ⋆ ⊢A w : B ∧ C , and B ∧ C is plausibly a minimal typing

forw .

2.1 Rejecting Bad Bounds
Now that we have seen how bad bounds lead to unintuitive

behaviour and affect minimality, it is tempting to try to detect

and reject types with bad bounds before they make it into

the type environment.

One possible approach is to define a well-formedness re-

lation on types Γ ⊢ T wf that identifies which types are free

of bad bounds. Type declarations are well-formed if their

bounds can be checked to be satisfiable:

Γ ⊢ S <: T

Γ ⊢ {A : S ..T } wf
(WF-Decl)

The rest of the types are all either trivially well-formed

(e.g. ⊤) or are well-formed if their components are (function

types).

There are at least two problems with this solution. First, it

does not generalize well to recursive and intersection types,

as explained in Amin et al. [2016]; Rapoport et al. [2017].

Additionally, even within D<:, we can no longer type decla-

rations where the bounds are abstract, leading to a loss in

expressivity:

λ(x : {A : ⊥..⊤})

λ(y : {B : ⊥..⊤})

λ(z :

{
C : x .A..y.B

}
)z

The term above can no longer be typed if we require{
C : x .A..y.B

}
to be well-formed, because we will not have

enough information to prove that x .A <: y.B until x and y
are instantiated.

3 Typing Scala
If bad bounds cause so much trouble, how does the Scala

compiler
2
manage to typecheck them? In fact, Scala avoids

dealing with bad bounds by restricting its subtyping relation

to not be transitive.

Consider the example code below, which is a Scala version

of our counterexample for minimality of D<:. In D<:, the

code would typecheck, because the bounds on the abstract

type declaration mean that Int => Int <: Int => String.
However, the snippet does not typecheck in Scala: there

is no transitivity of subtyping!

trait BadBounds {

type E >: Int => Int <: Int => String

val f : Int => Int = (x) => x

val f2 : Int => String = f // Type Mismatch Error

/∗ found: (Int => Int); required : Int => String ∗/ }

2
By the “Scala compiler”, we mean a June 2017 version of Dotty. In most

cases, scalac behaves similarly to Dotty.

The information about the lower and upper bounds is not

entirely lost. The compiler still uses it, but only when one of

the two types in the subtype check is the abstract type. This

patched-up version of the code typechecks:

trait BadBounds {

type E >: Int => Int <: Int => String

val f : Int => Int = (x) => x

val e: E = f

val f2: Int => String = e}

Here, the two subtype checks executed are Int => Int <:
E and E <: Int => Strinд. Both of these involve E directly,

so the type bounds are considered during the check. Indeed,

inspection of the Dotty code shows it runs an algorithm

similar to the one below (TB stands for “type bounds”):

def sub(t1 : Type, t2 : Type): Boolean = {

val f = t2 match { case TB(l2 , u2) => sub(t1 , l2)...}

f || t1 match { case TB(l1 , u1) => sub(u1, t2)...}}

In addition to dropping transitivity, Scala’s handling of

bad bounds takes exponential time in the worst case. Let PN
denote the following program:

trait PN {

type T1 <: T2 ; . . . ; type TN−1 <: TN ; type TN
type T2∗N >: T2∗N−1 ; . . . ; type TN+2 >: TN+1 ; type TN+1
val v1 : T1 ; val v2∗N : T2∗N = v1 }

Notice that T1 <: TN via a chain of N upper bounds that

are discoverable by the subtyping algorithm. The same holds

for TN+1 <: T2∗N via lower bounds. However, TN is not a

subtype of TN+1, so a subtype check sub(T1,T2∗N), triggered

by the assignment val v2∗N : T2∗N = v1, will fail only after at

least N nested recursive calls. Since all the calls are eventu-

ally unsuccessful, this means there are at least 2
N
recursive

calls. We have experimentally verified that the compilation

time increases exponentially for this family of programs.

4 Formalization
In this section, we present Step Typing and Step Subtyping,

which form a sound, decidable typechecking algorithm for a

subset of D<:.

4.1 Exposure
The exposure relation Γ ⊢ T ⇑ T ′ maps a type T to a su-

pertype T ′ that is not path-dependent. If T is not a path-

dependent type to start with, exposure behaves as the iden-

tity function. If T is the path-dependent type x .A, exposure
traverses the type environment Γ, starting with the type of

x , until it finds an upper bound that is not path-dependent,

which it then returns:

Γ(x) = T Γ ⊢ T ⇑ {A : S ..U } Γ ⊢ U ⇑ V

Γ ⊢ x .A ⇑ V
(X-Path)

4

SCALA’17, October 22–23, 2017, Vancouver, Canada Abel Nieto

A sample judgment would be: x : {A : ⊥..∀(z : ⊤)⊤} ,y :

{B : ⊥..x .A} ⊢ y.B ⇑ ∀(y : ⊤)⊤. As is the case with some of

the relations we will define later on, ⊥ needs special treat-

ment:

Γ(x) = T Γ ⊢ T ⇑ ⊥

Γ ⊢ x .A ⇑ ⊥
(X-Bot)

Exposure is used in places where the typechecker sees a

path-dependent type, but needs a supertype of it that is a

function or a type declaration. We base our exposure relation

in both the exposure operation present in Kernel F<: [Pierce

2002] and the treatment of type bounds in Scala. Exposure

preserves subtyping (Γ ⊢ T ⇑ T ′ =⇒ Γ ⊢ T <: T ′), and
terminates.

4.2 Promotion and Demotion
The promotion relation Γ ⊢ T ⇑x T ′ maps a type T to a su-

pertypeT ′ such that x < f v (T ′). IfT = x .A, then promotion

looks up x in the environment, and then uses exposure to

find a suitable upper boundU :

Γ(x) = T Γ ⊢ T ⇑ {A : L..U }

Γ ⊢ x .A ⇑x U
(P-Up)

Two points of note: we know that x < f v (U) because
D<: environments (unlike DOT’s) are acyclic in a certain

sense we do not fully define here. Second, in the premises,

we do not simply expose x .A (Γ ⊢ x .A ⇑ T ′): that would
make T ′ not a path-dependent type, which is too strong of a

condition; we only need that T ′ does not contain x .
When promoting function types, we need to account for

the argument being contravariant. This hints at the need

of a relation that is the dual of promotion. The demotion

relation Γ ⊢ T ⇓x T ′ fulfills this role: it maps a type T to

a subtype T ′ such that x < f v (T ′). For every promotion

inference rule, there is a corresponding one in the demotion

relation. Promotion and demotion are combined to handle

function types:

Γ ⊢ S ⇓x S ′ Γ,y : S ′ ⊢ T ⇑x T ′ y , x

Γ ⊢ ∀(y : S)T ⇑x ∀(y : S ′)T ′
(P-Lam)

Notice how the argument type is demoted, while the result

type is promoted. Type declarations are treated similarly. Fi-

nally, here is a sample promotion judgment: x : {A : ⊥..⊤} ⊢
∀(y : x .A)x .A ⇑x ∀(y : ⊥)⊤.

Promotion and and demotion are adapted from the same-

named relations present in Pierce and Turner [2000]. They

remove all occurrences of the specified free variable (Γ ⊢
T ⇑x T ′ ∨ Γ ⊢ T ⇓x T ′ =⇒ x < f v (T)), preserve subtyping
(Γ ⊢ T ⇑x T ′ =⇒ Γ ⊢ T <: T ′ ∧ Γ ⊢ T ⇓x T ′ =⇒ Γ ⊢ T ′ <:
T), and terminate.

4.3 Step Typing
We can now define Step Typing. Step Typing builds on the

standard typing relation defined in Amin et al. [2016].

There are two rules in the standard typing relation that

are not syntax-directed: Sub, which is needed when typing

function applications, and Let, for typing let-expressions:

Γ ⊢ t : T Γ ⊢ T <: U

Γ ⊢ t : U
(Sub)

Γ ⊢ t : T Γ,x : T ⊢ u : U
x < f v (U)

Γ ⊢ let x = t in u : U :

(Let)

Sub is not syntax-directed because the typechecker needs

to “guess” the typeU in the conclusion. Similarly, Let forces

us to guess a typeU where x is not free.

To fix these issues, Step Typing differs from the standard

typing relation in two ways. First, it drops the subsumption

rule: instead, when typing a function application it uses

exposure to find a function type for the term in the function

position:

Γ ⊢S x : V Γ ⊢ V ⇑ ∀(z : S)T
Γ ⊢S y : U Γ ⊢S U <: S

Γ ⊢S x y : [z := y]T
(T-All-E)

Second, to make Let syntax-directed it uses promotion to

remove all references to the bound variable in the returned

type of a let-expression:

Γ ⊢S t : T Γ,x : T ⊢S u : U
′

Γ,x : T ⊢ U ′ ⇑x U

Γ ⊢S let x = t in u : U
(T-Let)

4.4 Step Subtyping
The standard subtyping relation requires three changes: the

first two to make the rules syntax-directed, and the last one

to guarantee termination.

We drop the general reflexivity rule, replacing it with

reflexivity of only path-dependent types. General reflexivity

still holds, just not as an axiom:

Γ ⊢S x .A <: x .A (S-Refl)

Transitivity goes away: instead, whenever we are doing

a subtype check involving a path-dependent type, we use

exposure to find a lower or upper bound for it, and then

recursively continue the subtype check on the bound. The

upper bound case looks like

Γ(x) = T Γ ⊢ T ⇑ {A : S1..S2} Γ ⊢S S2 <: U

Γ ⊢S x .A <: U
(S-<:-Sel)

Notice how, once again, we do not apply exposure directly

to x .A: otherwise, we might miss some cases where S2 is a
path-dependent type by “overshooting”. For example, if Γ =
x : {A : ⊥..⊤} ,y : {B : ⊥..x .A}, we can derive Γ ⊢S y.B <:

5

Towards Algorithmic Typing for DOT (Short Paper) SCALA’17, October 22–23, 2017, Vancouver, Canada

x .A by a combination of S-<:-Sel and Refl, but Γ ⊢ y.B ⇑ ⊤,
and we cannot derive Γ ⊢S ⊤ <: x .A.
Finally, so that the algorithm terminates, we only allow

subtyping between function types with the same argument

type (as opposed to the standard contravariant rule).

Γ,x : S ⊢S T1 <: T2

Γ ⊢S ∀(x : S)T1 <: ∀(x : S)T2
(S-All-<:-All)

This is the same restriction used to make Kernel F<: de-

cidable [Cardelli and Wegner 1985]. Even though Step Sub-

typing always terminates, it takes exponential time in the

worst case to typecheck certain terms, like the PN example

of Section 3.

4.5 Metatheoretic Properties
Below, we summarize the metatheoretic properties of Step

Typing and Subtyping. Proofs of these theorems can be found

in the accompanying technical report [Nieto 2017].

Soundness: Γ ⊢S t : T =⇒ Γ ⊢ t : T ∧ Γ ⊢S S <: U =⇒

Γ ⊢ S <: U
Decidability: both relations are decidable. For Step Typ-

ing, we can use the size of the term being typed as a termina-

tion measure. For Step Subtyping, the termination measure

is a weight function on types similar to the one in Pierce

[2002] for Kernel F<:.

Completeness: the relations are not complete. Any pro-

gram that relies on a combination of bad bounds and transi-

tivity to typecheck will fail to do so.

Subject Reduction: we do not currently know whether

the subject-reduction property holds for Step Typing. This

means we could have Γ ⊢S t : T and t 7−→ t ′, but t ′ can only

be typed under the standard typing relation, and not Step

Typing.

5 Related Work
F<:: Pierce [1994] showed that algorithmic subtyping for

F<: is undecidable. Kernel F<: [Cardelli and Wegner 1985]

introduced the exposure operation. Pierce and Turner [2000]

use the promotion and demotion operations to do local type

inference on Kernel F<:

D<:: Rompf and Amin [2015] introduced D<: and proved

it type-safe. The version of D<: we use comes from Amin

et al. [2016], and uses ANF and small-step semantics.

DOT: on top of D<:, DOT adds features like recursive and

intersection types. There are many presentations of DOT

[Amin et al. 2016, 2012, 2014; Rapoport et al. 2017; Rompf

and Amin 2015], but they all use declarative typing rules.

Featherweight Scala: Cremet et al. [2006] introduced

Featherweight Scala (FSalg), which formalizes a subset of the

Scala type system. They show that the calculus has decidable

typing and subtyping. FSalg has not been proven type-safe.

Featherweight Scala is neither a subset nor a superset of D<:,

and differs from D<: in multiple ways: it is a class-based cal-

culus with nominal typing and has call-by-name semantics.

More relevant to our work, type members in FSalg (which

correspond to type declarations and type tags in D<:) are

either completely abstract (type A) or aliases (type A = T). It is
not possible to assign lower or upper bounds to an abstract

type member (type A >: S <: T), which is possible both in Scala

and D<:. Because bounds cannot be specified, it is not possi-

ble to create a custom subtyping lattice in FSalg, so there is

no bad bounds problem.

Scala: the Scala type system has been shown to be both

unsound [Amin and Tate 2016] and undecidable [Bjarnason

2009, 2011]. Because Scala’s type system is not formally

specified, it is hard to say at any one point in time whether

a specific proof of undecidability (or unsoundness) is still

valid or not [Odersky 2016].

6 Conclusions
This paper described our work in progress towards a version

of D<: with algorithmic typing. We showed how a combina-

tion of bad bounds and transitivity make it unlikely that a

typing algorithm satisfying the minimality condition exists

for D<:, even after removing the known source of undecid-

ability. We also showed how the Scala compiler deals with

bad bounds by dropping transitivity of subtyping. Finally, we

used prior work on decidable versions of F<:, as well as the

approach taken in the Scala compiler, to develop Step Typing

and Subtyping. These relations are sound and decidable, but

not complete, with respect to the standard relations.

Is the subset of D<: that Step Typing can type interesting?

Maybe. We think a more conclusive answer will depend

on whether the subject reduction property holds for Step

Typing. Because Step Typing mimics the behaviour of the

Scala compiler, we conjecture that the lack of transitivity

does not, on its own, mean we cannot type “useful” programs

(every single Scala program written to-date has been typed

with a similar restriction in place). Additionally, we think

that Step Typing might be capable of typing the encoding of

F<: in D<: shown in Amin et al. [2016]. This seems plausible

because even though the exposure operation does not bring

back transitivity of subtyping in D<:, the similar exposure

operation in F<: does recover transitivity [Pierce 2002].

Future work will involve formalizing Step Typing and

Subtyping in a mechanized proof, establishing subject reduc-

tion, investigating whether Step Typing is general enough

to type the aforementioned encoding of F<:, and extending

Step Typing to DOT.

Acknowledgments
We would like to thank Marianna Rapoport for multiple

helpful discussions about DOT. We would also like to thank

Prabhakar Ragde, Ifaz Kabir and Paul He for proofreading

this paper. This research was supported by the Natural Sci-

ences and Engineering Research Council of Canada.

6

SCALA’17, October 22–23, 2017, Vancouver, Canada Abel Nieto

References
Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro

Stucki. 2016. The Essence of Dependent Object Types. Springer Interna-
tional Publishing, Cham.

Nada Amin, Adriaan Moors, and Martin Odersky. 2012. Dependent object

types. In 19th International Workshop on Foundations of Object-Oriented
Languages.

Nada Amin, Tiark Rompf, and Martin Odersky. 2014. Foundations of path-

dependent types. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications, OOP-
SLA 2014. 233–249.

Nada Amin and Ross Tate. 2016. Java and Scala’s Type Systems are Unsound:

The Existential Crisis of Null Pointers. In to appear in OOPSLA 2016.
Runar Bjarnason. 2009. More Scala Typehackery. (2009). https://apocalisp.

wordpress.com/2009/09/02/ Accessed: 2017-07-15.
Runar Bjarnason. 2011. Simple SKI Combinator Calculus in Scala’s

Type System. (2011). https://apocalisp.wordpress.com/2011/01/13/
simple-ski-combinator-calculus-in-scalas-type-system/ Accessed: 2017-
07-15.

Luca Cardelli, Simone Martini, John C Mitchell, and Andre Scedrov. 1994.

An extension of system F with subtyping. Information and Computation
109, 1-2 (1994), 4–56.

Luca Cardelli and Peter Wegner. 1985. On understanding types, data ab-

straction, and polymorphism. ACM Computing Surveys (CSUR) 17, 4
(1985), 471–523.

Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky.

2006. A Core Calculus for Scala Type Checking. In Mathematical Foun-
dations of Computer Science, 31st International Symposium, Slovakia.

Abel Nieto. 2017. Towards Algorithmic Typing for DOT. CoRR
abs/1708.05437 (2017). http://arxiv.org/abs/1708.05437

Martin Odersky. 2016. Scaling DOT to Scala — Soundness. http://www.
scala-lang.org/blog/2016/02/17/scaling-dot-soundness.html. (2016).

Benjamin C Pierce. 1994. Bounded quantification is undecidable. Information
and Computation 112, 1 (1994), 131–165.

Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The
MIT Press.

Benjamin C Pierce and David N Turner. 2000. Local type inference. ACM
Transactions on Programming Languages and Systems (TOPLAS) 22, 1
(2000), 1–44.

Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. 2017. A Simple

Soundness Proof for Dependent Object Types. In Proceedings of the 2017
ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2017. To appear.

Tiark Rompf and Nada Amin. 2015. From F to DOT: Type Soundness

Proofs with Definitional Interpreters. CoRR abs/1510.05216v1 (2015).

http://arxiv.org/abs/1510.05216v1

7

https://apocalisp.wordpress.com/2009/09/02/
https://apocalisp.wordpress.com/2009/09/02/
https://apocalisp.wordpress.com/2011/01/13/simple-ski-combinator-calculus-in-scalas-type-system/
https://apocalisp.wordpress.com/2011/01/13/simple-ski-combinator-calculus-in-scalas-type-system/
http://arxiv.org/abs/1708.05437
http://www.scala-lang.org/blog/2016/02/17/scaling-dot-soundness.html
http://www.scala-lang.org/blog/2016/02/17/scaling-dot-soundness.html
http://arxiv.org/abs/1510.05216v1

	Abstract
	1 Introduction
	2 Bad Bounds
	2.1 Rejecting Bad Bounds

	3 Typing Scala
	4 Formalization
	4.1 Exposure
	4.2 Promotion and Demotion
	4.3 Step Typing
	4.4 Step Subtyping
	4.5 Metatheoretic Properties

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

